型號:ANB系列
電路方式:IGBT/SPWM脈寬調制方式 正弦波輸出
?輸入電壓:單相220V±10% ?三相380V±10%
?輸入相數:單相兩線/三相四線
?輸入頻率:50Hz/60Hz±10%
?輸出電壓:相電壓:低檔:0-150V,高檔:0-300V(單相)線電壓:低檔:0-260V,高檔:0-520V(三相)
?輸出頻率:范圍:40.0~200.0Hz,調節步幅為0.1Hz;額定:50/60/100/200Hz
?穩壓率:≤1%
頻率穩定度:定頻≤0.01%,調頻≤0.1%
波形失真度:THD≤2%
反應時間:≤2ms
?效率:≥94%
顯示方式:默認數碼管顯示 ?彩色觸摸屏顯示(選配)
保護功能:完善的過壓、過流、過溫、過載、短路保護及自動報警
過流保護特性:105% 10分鐘;120% 1分鐘;150% 30秒;200% 10秒;300%立即保護。
?通信接口:RS232或RS485通訊(選配)
三相相位差:120o±2o
動態特性:100%突加突卸負載,電壓突變≤5%,恢復時間20ms。
絕緣電抗:500Vdc?20MΩ
?耐壓絕緣:1800Vac/5mA/1分鐘
? 冷卻方式:風扇制冷
工作溫度:-15℃-+45℃
相對濕度:0-90%(非凝結狀態)
海拔高度:≤2000m
概 述 | ||||||||||||||||||||||
WYJ系列直流穩壓電源是高穩定度的穩壓流自動轉換的主精度直流電源,輸出電壓在額定范圍內連續可調。輸出電源電壓顯示分別有數碼管顯示、液晶顯示、指針式電表三種形式可選。直流電源輸出形式為單路、雙路和三路(雙路附加固定5V、3V)三種,雙路輸出都可設計成跟蹤形式串聯或并聯,輸出具有良好的過載、過流保護;使用性、安全性極好。 | ||||||||||||||||||||||
適用范圍 | ||||||||||||||||||||||
科研、院校、工廠及電子電器修理等。 | ||||||||||||||||||||||
技術參數 | ||||||||||||||||||||||
|
應用壓電變壓器可使高頻功率變換器實現輕、小、薄和高功率密度。壓電變壓器利用壓電陶瓷材料特有的“電壓-振動”變換和“振動-電壓”變換的性質傳送能量,其等效電路如同一個串并聯諧振電路,是功率變換領域的研究熱點之一。 三是采用新型電容器。為了減小電力電子設備的體積和重量,必須設法改進電容器的性能,提高能量密度,并研究開發適合于電力電子及電源系統用的新型電容器,要求電容量大、等效串聯電阻ESR小、體積小等。 關注點三:高頻磁與同步整流技術 電源系統中應用大量磁元件,高頻磁元件的材料、結構和性能都不同于工頻磁元件,有許多問題需要研究。對高頻磁元件所用磁性材料有如下要求:損耗小,散熱性能好,磁性能優越。適用于兆赫級頻率的磁性材料為人們所關注,納米結晶軟磁材料也已開發應用。 高頻化以后,為了提高開關電源的效率,必須開發和應用軟開關技術。它是過去幾十年國際電源界的一個研究熱點。 對于低電壓、大電流輸出的軟開關變換器,進一步提高其效率的措施是設法降低開關的通態損耗。例如同步整流SR技術,即以功率MOS管反接作為整流用開關二極管,代替蕭特基二極管(SBD),可降低管壓降,從而提高電路效率。
功率半導體開關管在開關過程中產生的di/dt和dv/dt,引起強大的傳導電磁干擾和諧波干擾。有些情況還會引起強電磁場(通常是近場)輻射。不但嚴重污染周圍電磁環境,對附近的電氣設備造成電磁干擾,還可能危及附近操作人員的安全。同時,電力電子電路(如開關變換器)內部的控制電路也必須能承受開關動作產生的EMI及應用現場電磁噪聲的干擾。上述特殊性,再加上EMI測量上的具體困難,在電力電子的電磁兼容領域里,存在著許多交*科學的前沿課題有待人們研究。國內外許多大學均開展了電力電子電路的電磁干擾和電磁兼容性問題的研究,并取得了不少可喜成果。近幾年研究成果表明,開關變換器中的電磁噪音源,主要來自主開關器件的開關作用所產生的電壓、電流變化。變化速度越快,電磁噪音越大。關注點九:設計和測試技術建模、仿真和CAD是一種新的設計工具。為仿真電源系統,首先要建立仿真模型,包括電力電子器件、變換器電路、數字和模擬控制電路以及磁元件和磁場分布模型等,還要考慮開關管的熱模型、可*性模型和EMC模型。各種模型差別很大,建模的發展方向是:數字-模擬混合建模、混合層次建模以及將各種模型組成一個統一的多層次模型等。
德宏變頻電源-德宏變頻電源(圖)德宏變頻電源-德宏變頻電源(圖)德宏變頻電源-德宏變頻電源(圖)德宏(圖)
上世紀60年代,開關電源的問世,使其逐步取代了線性穩壓電源和SCR相控電源。40多年來,開關電源技術有了飛迅發展和變化,經歷了功率半導體器件、高頻化和軟開關技術、開關電源系統的集成技術三個發展階段。 功率半導體器件從雙極型器件(BPT、SCR、GTO)發展為MOS型器件(功率MOSFET、IGBT、IGCT等),使電力電子系統有可能實現高頻化,并大幅度降低導通損耗,電路也更為簡單。 自上世紀80年代開始,高頻化和軟開關技術的開發研究,使功率變換器性能更好、重量更輕、尺寸更小。高頻化和軟開關技術是過去20年國際電力電子界研究的熱點之一。 上世紀90年代中期,集成電力電子系統和集成電力電子模塊(IPEM)技術開始發展,它是當今國際電力電子界亟待解決的新問題之一。 關注點一:功率半導體器件性能 1998年,Infineon公司推出冷MOS管,它采用“超級結”(Super-Junction)結構,故又稱超結功率MOSFET。工作電壓600V~800V,通態電阻幾乎降低了一個數量級,仍保持開關速度快的特點,是一種有發展前途的高頻功率半導體器件。 IGBT剛出現時,電壓、電流額定值只有600V、25A。很長一段時間內,耐壓水平限于1200V~1700V,經過長時間的探索研究和改進,
2016