型號 | 粒度 | 碘值 mg/g | 四氯化碳 % | 灰份 % | 堆積重 g/L | 強度 % | 水份 % |
ZK-4.0(A) | Ф4.0 | ≥900 | ≥55 | 6-12 | ≥400 | ≥95 | ≤5 |
ZK-4.0(B) | Ф4.0 | ≥1050 | ≥70 | 8-12 | ≥380 | ≥90 | ≤5 |
ZK-4.0(C) | Ф4.0 | ≥1100 | ≥80 | 8-15 | ≥360 | ≥90 | ≤5 |
PK 8x16 | 8x16 | >1000 | ≥60 | 8-12 | ≥400 | ≥95 | ≤5 |
pk 4x10 | 4x10 | >1050 | ≥70 | 8-15 | ≥380 | ≥90 | ≤5 |
吸附原理這三個階段可用活性炭應用歷程中兩件歷史性大事。作為劃分的界限。? 鑒別方法 ? 技術
分析項目 |
測試數據 |
分析項目 |
測試數據 |
碘值 |
>800mg/g |
強度 |
>92% |
比表面積 |
>850m2/g |
亞甲蘭值 |
120-150mg/g |
總孔容積 |
>0.8cm3/g |
余氯吸附率 |
≥85% |
充填密度 |
0.45-0.55g/cm3 |
|
|
表中粒徑分為1.0,1.5,2.0,3.0,4.0。其它指標可隨用戶需求調節 |
活性炭的主要原料幾乎可以是所有富含碳的有機材料,如煤、木材、果殼、椰殼、核桃殼、杏殼、棗殼等。這些含碳材料在活化爐中,在高溫和一定壓力下通過熱解作用被轉換成活性炭。在此活化過程中,巨大的表面積和復雜的孔隙結構逐漸形成, 而所謂的吸附過程正是在這些孔隙中和表面上進行的,活性炭中孔隙的大小對吸附質有選擇吸附的作用,這是由于大分子不能進入比它孔隙小的活性炭孔徑內的緣故;钚蕴渴怯珊繛橹鞯奈镔|作原料,經高溫炭化和活化制得的疏水性吸附劑。活性炭含有大量微孔,具有巨大無比的表面積,能有效地去除色度、臭味,可去除二級出水中大多數有機污染物和某些無機物,包含某些有毒的重金屬;钚蕴康闹饕蠋缀蹩梢允撬懈缓嫉挠袡C材料,如煤、木材、果殼、椰殼、核桃殼、杏殼、棗殼等。這些含碳材料在活化爐中,在高溫和一定壓力下通過熱解作用被轉換成活性炭。在此活化過程中,巨大的表面積和復雜的孔隙結構逐漸形成, 而所謂的吸附過程正是在這些孔隙中和表面上進行的,活性炭中孔隙的大小對吸附質有選擇吸附的作用,這是由于大分子不能進入比它孔隙小的活性炭孔徑內的緣故;钚蕴渴怯珊繛橹鞯奈镔|作原料,經高溫炭化和活化制得的疏水性吸附劑;钚蕴亢写罅课⒖,具有巨大無比的表面積,能有效地去除色度、臭味,可去除二級出水中大多數有機污染物和某些無機物,包含某些有毒的重金屬。(2)飲用水深度處理活性炭吸附技術在國內用于醫藥、化工和食品等工業的精制和脫色已有多年歷史。20世紀70年代開始用于工業廢水處理。生產實踐表明,活性炭對水中微量有機污染物具有卓越的吸附性,它對紡織印染、染料化工、食品加工和有機化工等工業廢水都有良好的吸附效果。一般情況下,對廢水中以BOD、COD等綜合指標表示的有機物,如合成染料、表面性劑、酚類、苯類、有機氯、農藥和石油化工產品等,都有獨特的去除能力。所以,活性炭吸附法已逐步成為工業廢水二級或三級處理的主要方法之一。由于化學鍵強,對污染物分子的結構影響較大,故可把化學吸附看做化學反應,是污染物與活性炭間化學作用的結果;瘜W吸附一般包含電子對共享或電子轉移,而不是簡單的微擾或弱極化作用,是不可逆的化學反應過程。物理吸附和化學吸附的根本區別在于產生吸附鍵的作用力。4、石油類活性炭:例如以瀝青等為原料制成的瀝青基球狀活性炭。3. 礦物質原料活性炭